Iron - Iron Carbide Equilibrium

 

Table of Contents

 

  

1-    Introduction………………………………………………………………………...
2-    Iron-Iron Carbide Equilibrium Diagram (.35%) V. I………………………………....

3-    Iron-Iron Carbide Equilibrium Diagram (.35%) V. II………………………………....

4    Characteristics of .35% Carbon…………………………………………….………..

5-   X - & Y- Axis Statement…………………………………………………………...

6-   Equilibrium Statement……………………………………………………………...

7-   Bibliography……………………………………………………………………….

1. Introduction:

The iron-iron carbide equilibrium diagram is one of the most important diagrams is used to realize the phase diagram.  The Iron-Iron Carbide Equilibrium Diagram identifies temperature affects on iron and carbon. It shows different percentage of Iron and Carbon.  
The Diagram also explains the importance and meaning of equilibrium statement. It develops and improve the way we understand the complex combination of  Iron and steel components 

                                                                              2. Iron-Iron Carbide Equilibrium Diagram (.35%) V. I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Iron-Iron Carbide Equilibrium Diagram (.35%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Characteristic of .35% Carbon

Item

Description

Value

Start

End

Range

3.1.

Is .35% C Hypo Eutectic?

Yes

 

 

 

 

Is .35% C Hyper Eutectic?

No

 

 

 

3.2

Is .35% C Hypo Eutectoid?

Yes

 

 

 

 

Is .35% C Hyper Eutectoid?

No

 

 

 

3.3

Allotropic Cystraline forms

BCC

0 F

1333 F

1333 F

 

Allotropic Crystaline forms

BCC & FCC

1333 F

1450 F

117 F

 

Allotropic Crystaline forms

FCC

1450 F

2650 F

1200 F

3.4

Lower Critical Temperature

1333 F

 

 

 

3.5

Upper Critical Temperature

1450 F

 

 

 

3.6

Transition Zones

 

1333 F

1450 F

117 F

3.7

Solution

Pearlie & ferrite

1450 F

2650 F

1200 F

 

Mixture

Austenite solid soln of carbide in gamma iron

0 F

1333 F

1333 F

 

Mixture and Solution

Ferrite & austenite

1333 F

1450 F

117 F

3.8

Transition Phase Zone

 

2650 F

2740 F

90 F

3.9

Solid

 

0 F

2650 F

2650 F

 

Liquid

 

2740 F

 

 

 

Mushy

 

2650 F

2740 F

90 F

3.10

Magnetic

 

0 F

1420 F

1420 F

 

Non-magnetic

 

1420 F

2715 F

1295 F

 

Magnetic

 

2715 F

2740 F

25 F

3.11

Ferrite region

 

0 F

1450 F

1450 F

 

Pearlite region

 

0 F

1333 F

1333 F

 

Cementite region

N/A

 

 

 

 

Austenite region

 

1333 F

2715 F

1383 F

 

Ledeburite region

N/A

 

 

 

3.12

Annealing temperature

1550 F

 

 

 

 

Quenching temperature

1585 F

 

 

 

 

Normalizing temperature

1690 F

 

 

 

 

Forging temperature

2350 F

 

 

 

 

4. X-axis and Y-axis


The X axis Characteristics:

1-                 Represents various percentages of carbon in ferrite.

2-                 Chooses type of metal iron, steel, semi-steel, or cast iron

3-                 It starts at 0 percent carbon and 100 percent ferrite and ends at 5 percent carbon and 95 percent ferrite.

4-                 Characterize hyper or hypo eutectoid and hyper or hypo eutectic metals.

The Y axis Characteristics:

1-                 Represents temperature range from 0 to 3000 degrees Fahrenheit.

2-                 Clearly identifies Lower Critical Temperature and Upper Critical Temperature.

3-                 Shows the temperature range in Centigrade ranging from 0 to 1500 C.

4-                 Identify Iron and Carbon magnetic.

5-                 Illustrated carbon phases (BCC, PCC, FCC) and iron various kinds of (ferrite, austenite, delta iron, cementite, ledeburite, and pearlite).

 

5. Equilibrium Statement
      The iron-iron equilibrium diagram is a diagram which is used to explain temperature influences on iron and carbon. It demonstrates material process during cooling. In this lab, we found various combinations of iron when it exposed to temperature changes.  For example: At .35% Carbon, when temperature rises, the following are some of the characteristics as temperature changes:.

Ø       0 F to 1333 F the Lower Critical Temperature, a body centered cubic (BCC) lattice structure and a ferrite and pearlite grain structure in mixture.

Ø      0 F to 1420 F .35% is magnetic.

Ø     1420 F to 2715 F, nonmagnetic properties.  

Ø     1333 F and 1450 F a solution of ferrite and austenite with a body centered cubic (BCC) and face centered cubic (FCC).

Ø     Upper Critical Temperature at 1450 F

Ø     Top annealing temperature at 1550 F

Ø     Top quenching temperature at 1585 F

Ø     Top normalizing temperature at 1690 F

Ø     Top forging temperature at 2350 F

Ø     At the upper critical temperature, wholly FCC and a solid solution of carbide in gamma iron.

Ø     2650 F, austenite in mother liquor in a mushy stage with FCC and liquor.

Ø     2740 F, delta iron in mother liquor with a BCC structure

Ø     2740 F, Magnetic in single phase liquid.

 

6. Bibliography



• Pollack, Herman W. Materials Science and Metallurgy. Fourth Edition. 1988

Paglierani, Gary. Industrial Materials and Processes. Department of Industrial Technology. Califorinia State University, Fresno, Spring 2005